Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
2.
Int J Mol Sci ; 24(20)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37895120

RESUMO

Acute myeloid leukemia (AML) with BCR::ABL1 has recently been recognized as a distinct subtype in international classifications. Distinguishing it from myeloid blast crisis chronic myeloid leukemia (BC-CML) without evidence of a chronic phase (CP), remains challenging. We aimed to better characterize this entity by integrating clonal architecture analysis, mutational landscape assessment, and gene expression profiling. We analyzed a large retrospective cohort study including CML and AML patients. Two AML patients harboring a BCR::ABL1 fusion were included in the study. We identified BCR::ABL1 fusion as a primary event in one patient and a secondary one in the other. AML-specific variants were identified in both. Real-time RT-PCR experiments demonstrated that CD25 mRNA is overexpressed in advanced-phase CML compared to AML. Unsupervised principal component analysis showed that AML harboring a BCR::ABL1 fusion was clustered within AML. An AML vs. myeloid BC-CML differential expression signature was highlighted, and while ID4 (inhibitor of DNA binding 4) mRNA appears undetectable in most myeloid BC-CML samples, low levels are detected in AML samples. Therefore, CD25 and ID4 mRNA expression might differentiate AML with BCR::ABL1 from BC-CML and assign it to the AML group. A method for identifying this new WHO entity is then proposed. Finally, the hypothesis of AML with BCR::ABL1 arising from driver mutations on a BCR::ABL1 background behaving as a clonal hematopoiesis mutation is discussed. Validation of our data in larger cohorts and basic research are needed to better understand the molecular and cellular aspects of AML with a BCR::ABL1 entity.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide Aguda , Humanos , Crise Blástica/genética , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Estudos Retrospectivos , Leucemia Mielogênica Crônica BCR-ABL Positiva/diagnóstico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , RNA Mensageiro
3.
Br J Haematol ; 202(2): 284-288, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37183377

RESUMO

Myeloproliferative neoplasms in blastic phase (MPN-BP) have a dreadful prognosis. We report the characteristics and outcomes of five MPN-BP patients treated with a never-before-described combination of azacytidine and venetoclax (to control BP transformation), added to ruxolitinib (needed to control constitutional symptoms). Median age was 76 years (range 72-84), and worst performance status was 2. The overall response rate was 80%, and the complete remission rate was 40%. With median follow-up of 10.0 months (range 4.2-13.4), median overall survival was 13.4 months (95% CI 4.2-13.4). We did not detect any unexpected treatment-related toxicity, and quality of life was improved.


Assuntos
Azacitidina , Transtornos Mieloproliferativos , Humanos , Idoso , Idoso de 80 Anos ou mais , Azacitidina/efeitos adversos , Crise Blástica/tratamento farmacológico , Resultado do Tratamento , Qualidade de Vida , Transtornos Mieloproliferativos/tratamento farmacológico
4.
Clin Case Rep ; 11(5): e7343, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37207087

RESUMO

Key Clinical Message: 18F-FDG PET/CT has clinical relevance in HCL at diagnosis and for the follow-up of patients treated, especially in case of atypical presentations such as bone involvements (which are probably underestimated) and poor bone marrow infiltration. Abstract: Bone lesions are rarely reported in Hairy Cell Leukemia (HCL). We report two BRAFV600E mutated HCL patients presented bone lesions at foreground, poor bone marrow involvement, and the important role 18F-FDG PET/CT played in their management. We discuss the crucial role that 18F-FDG PET/CT could play in HCL routine practice.

5.
Turk J Haematol ; 40(2): 101-117, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37026766

RESUMO

Objective: Chronic myeloid leukemia (CML) is a disease caused by the acquisition of BCR-ABL1 fusion in hematopoietic stem cells. In this study, we focus on the oncofetal ENOX2 protein as a potential secretable biomarker in CML. Materials and Methods: We used cell culture, western blot, quantitative RT-PCR, ELISA, transcriptome analyses, and bioinformatics techniques to investigate ENOX2 mRNA and protein expression. Results: Western blot analyses of UT-7 and TET-inducible Ba/F3 cell lines demonstrated the upregulation of the ENOX2 protein. BCR-ABL1 was found to induce ENOX2 overexpression in a kinase-dependent manner. We confirmed increased ENOX2 mRNA expression in a cohort of CML patients at diagnosis. In a series of CML patients, ELISA assays showed a highly significant increase of ENOX2 protein levels in the plasma of patients with CML compared to controls. Reanalyzing the transcriptomic dataset confirmed ENOX2 mRNA overexpression in the chronic phase of the disease. Bioinformatic analyses identified several genes whose mRNA expressions were positively correlated with ENOX2 in the context of BCR-ABL1. Some of them encode proteins involved in cellular functions compatible with the growth deregulation observed in CML. Conclusion: Our results highlight the upregulation of a secreted redox protein in a BCR-ABL1-dependent manner in CML. The data presented here suggest that ENOX2, through its transcriptional mechanism, plays a significant role in BCR-ABL1 leukemogenesis.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Complexos Multienzimáticos/metabolismo , Oxirredução , Inibidores de Proteínas Quinases
6.
Cells ; 12(4)2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36831265

RESUMO

PURPOSE: To model CML progression in vitro and generate a blast crisis (BC-CML) model in vitro in order to identify new targets. METHODS: Three different CML-derived iPSC lines were mutagenized with the alkylating agent ENU on a daily basis for 60 days. Cells were analyzed at D12 of hematopoietic differentiation for their phenotype, clonogenicity, and transcriptomic profile. Single-cell RNA-Seq analysis has been performed at three different time points during hematopoietic differentiation in ENU-treated and untreated cells. RESULTS: One of the CML-iPSCs, compared to its non-mutagenized counterpart, generated myeloid blasts after hematopoietic differentiation, exhibiting monoblastic patterns and expression of cMPO, CD45, CD34, CD33, and CD13. Single-cell transcriptomics revealed a delay of differentiation in the mutated condition as compared to the control with increased levels of MSX1 (mesodermal marker) and a decrease in CD45 and CD41. Bulk transcriptomics analyzed along with the GSE4170 GEO dataset reveal a significant overlap between ENU-treated cells and primary BC cells. Among overexpressed genes, CD25 was identified, and its relevance was confirmed in a cohort of CML patients. CONCLUSIONS: iPSCs are a valuable tool to model CML progression and to identify new targets. Here, we show the relevance of CD25 identified in the iPSC model as a marker of CML progression.


Assuntos
Células-Tronco Pluripotentes Induzidas , Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide , Humanos , Crise Blástica , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Diferenciação Celular
7.
Br J Haematol ; 200(2): 175-186, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36214090

RESUMO

Superior rates of deep molecular response (DMR) have been reported with the combination of tyrosine kinase inhibitors and pegylated-interferon-alpha (Peg-IFN) in patients with newly diagnosed chronic phase-chronic myeloid leukaemia (CP-CML). In this setting, this study investigated the efficacy and safety of dasatinib combined to Peg-IFN-α2b (Dasa-PegIFN, NCT01872442). A total of 79 patients (age ≤65 years) started dasatinib; 61 were eligible for Peg-IFNα-2b add-on therapy at month 3 for a maximum 21-months duration. Dasatinib was continued thereafter. The primary endpoint was the cumulative rate of molecular response 4.5 log (MR4.5 ) by 12 months. The results are reported for the 5-year duration of the study. Grade 3 neutropenia was frequent with the combination but did not induce severe infection (one of grade 3). Other adverse events were generally low grade (4% of grade 3-4) and expected. Seventy-nine per cent and 61% of patients continued the Peg-IFN until months 12 and 24, respectively. Overall, at these time points, MR4.5 rates were 25% and 38%, respectively. Thereafter, 32% and 46% of patients achieved a sustained (≥2 years) MR4.5 or MR4 , respectively. This work established the feasibility and high rates of achievement of early and sustained DMR (a prerequisite for treatment-free-remission) with dasatinib and Peg-IFNα-2b combination as initial therapy.


Assuntos
Interferon-alfa , Leucemia Mieloide de Fase Crônica , Humanos , Idoso , Dasatinibe/efeitos adversos , Interferon-alfa/efeitos adversos , Leucemia Mieloide de Fase Crônica/tratamento farmacológico , Polietilenoglicóis/efeitos adversos , Resultado do Tratamento
9.
J Clin Immunol ; 42(1): 60-63, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34596815

RESUMO

Chronic granulomatous disease (CGD) is an inherited immunodeficiency due to defective leukocyte NADPH responsible for recurrent infections and aberrant inflammation. Mutations in the CYBB gene are responsible for the X-linked CGD and account for approximately 70% of the cases. CGD is diagnosed during childhood in males. Female carriers may have biased X-inactivation and may present with clinical manifestations depending on the level of residual NADPH oxidase activity. We report the case of a previously asymptomatic female carrier who was diagnosed at age 67 with a skin infection with the rare fungus Paecilomyces lilacinus as the first manifestation of CGD. Dihydrorhodamine 123 (DHR) activity was below 10%. Next-generation sequencing (NGS) revealed mutations in DNMT3A, ASXL1, and STAG2 suggesting that clonal hematopoiesis could be responsible for a progressive loss of NADPH oxidase activity and the late onset of X-linked CGD in this patient. Long-term follow-up of asymptomatic carrier women seems to be essential after 50 years old.


Assuntos
Doença Granulomatosa Crônica , Hypocreales , Idoso , Doença Granulomatosa Crônica/diagnóstico , Doença Granulomatosa Crônica/genética , Humanos , Pessoa de Meia-Idade , NADPH Oxidases/genética , Inativação do Cromossomo X
11.
Blood Adv ; 5(5): 1442-1451, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33666653

RESUMO

We aimed to study the prognostic impact of the mutational landscape in primary and secondary myelofibrosis. The study included 479 patients with myelofibrosis recruited from 24 French Intergroup of Myeloproliferative Neoplasms (FIM) centers. The molecular landscape was studied by high-throughput sequencing of 77 genes. A Bayesian network allowed the identification of genomic groups whose prognostic impact was studied in a multistate model considering transitions from the 3 conditions: myelofibrosis, acute leukemia, and death. Results were validated using an independent, previously published cohort (n = 276). Four genomic groups were identified: patients with TP53 mutation; patients with ≥1 mutation in EZH2, CBL, U2AF1, SRSF2, IDH1, IDH2, NRAS, or KRAS (high-risk group); patients with ASXL1-only mutation (ie, no associated mutation in TP53 or high-risk genes); and other patients. A multistate model found that both TP53 and high-risk groups were associated with leukemic transformation (hazard ratios [HRs] [95% confidence interval], 8.68 [3.32-22.73] and 3.24 [1.58-6.64], respectively) and death from myelofibrosis (HRs, 3.03 [1.66-5.56] and 1.77 [1.18-2.67], respectively). ASXL1-only mutations had no prognostic value that was confirmed in the validation cohort. However, ASXL1 mutations conferred a worse prognosis when associated with a mutation in TP53 or high-risk genes. This study provides a new definition of adverse mutations in myelofibrosis with the addition of TP53, CBL, NRAS, KRAS, and U2AF1 to previously described genes. Furthermore, our results argue that ASXL1 mutations alone cannot be considered detrimental.


Assuntos
Mielofibrose Primária , Teorema de Bayes , Genômica , Humanos , Mutação , Mielofibrose Primária/diagnóstico , Mielofibrose Primária/genética , Prognóstico , Proteínas Repressoras/genética
12.
Leukemia ; 35(8): 2332-2345, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33483613

RESUMO

The STI571 prospective randomised trial (SPIRIT) French trial is a four-arm study comparing imatinib (IM) 400 mg versus IM 600 mg, IM 400 mg + cytarabine (AraC), and IM 400 mg + pegylated interferon alpha2a (PegIFN-α2a) for the front-line treatment of chronic-phase chronic myeloid leukaemia (CML). Long-term analyses included overall and progression-free survival, molecular responses to treatment, and severe adverse events. Starting in 2003, the trial included 787 evaluable patients. The median overall follow-up of the patients was 13.5 years (range 3 months to 16.7 years). Based on intention-to-treat analyses, at 15 years, overall and progression-free survival were similar across arms: 85%, 83%, 80%, and 82% and 84%, 87%, 79%, and 79% for the IM 400 mg (N = 223), IM 600 mg (N = 171), IM 400 mg + AraC (N = 172), and IM 400 mg + PegIFN-α2a (N = 221) arms, respectively. The rate of major molecular response at 12 months and deep molecular response (MR4) over time were significantly higher with the combination IM 400 mg + PegIFN-α2a than with IM 400 mg: p = 0.0001 and p = 0.0035, respectively. Progression to advanced phases and secondary malignancies were the most frequent causes of death. Toxicity was the main reason for stopping AraC or PegIFN-α2a treatment.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Adulto , Idoso , Idoso de 80 Anos ou mais , Citarabina/administração & dosagem , Relação Dose-Resposta a Droga , Feminino , Seguimentos , Humanos , Mesilato de Imatinib/administração & dosagem , Interferon-alfa/administração & dosagem , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Pessoa de Meia-Idade , Polietilenoglicóis/administração & dosagem , Prognóstico , Estudos Prospectivos , Proteínas Recombinantes/administração & dosagem , Taxa de Sobrevida , Adulto Jovem
14.
Blood Adv ; 4(19): 4887-4897, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33035330

RESUMO

Among myeloproliferative neoplasms, polycythemia vera (PV) and essential thrombocythemia (ET) are the 2 entities associated with the most chronic disease course. Leukemic evolution occurs rarely but has a grim prognosis. The interval between diagnosis and leukemic evolution is highly variable, from a few years to >20 years. We performed a molecular evaluation of 49 leukemic transformations of PV and ET by targeted next-generation sequencing. Using a hierarchical classification, we identified 3 molecular groups associated with a distinct time to leukemic transformation. Short-term transformations were mostly characterized by a complex molecular landscape and mutations in IDH1/2, RUNX1, and U2AF1 genes, whereas long-term transformations were associated with mutations in TP53, NRAS, and BCORL1 genes. Studying paired samples from chronic phase and transformation, we detected some mutations already present during the chronic phase, either with a significant allele burden (short-term transformation) or with a very low allele burden (especially TP53 mutations). However, other mutations were not detected even 1 year before leukemic transformation. Our results suggest that the leukemic transformation of PV and ET may be driven by distinct time-dependent molecular mechanisms.


Assuntos
Transtornos Mieloproliferativos , Policitemia Vera , Trombocitemia Essencial , Genômica , Humanos , Mutação , Policitemia Vera/genética , Trombocitemia Essencial/genética
15.
Cancer ; 126(15): 3438-3447, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32459375

RESUMO

BACKGROUND: Long-term treatment-free remission (TFR) represents a new goal for chronic myeloid leukemia (CML). In clinical practice, tyrosine kinase inhibitor (TKI) dose reductions can be considered a means of preventing adverse effects and improving quality of life. We hypothesized that administration of low-dose TKIs before treatment discontinuation does not impair TFR in patients with CML who have a deep molecular response (DMR, ≥MR4 ). METHODS: We conducted a retrospective analysis of 77 patients with CML who discontinued treatment with TKIs. Twenty-six patients had been managed with low-dose TKIs before stopping treatment. Patients were to be exposed to TKIs for ≥5 years and to low-dose TKIs for ≥1 year and in DMR for ≥2 years. The loss of major molecular response (MMR) was considered a trigger for restarting therapy. RESULTS: In the low-dose group, 61.5% of patients received second-generation TKIs, and dose reduction was ≥50% for 65.4% of patients. With a median follow-up of 61.5 months, TFR at 12 months was 56.8% in the full-dose TKI group and 80.8% in the low-dose group, and TFR at 60 months was 47.5% and 58.8%, respectively. The median time to molecular recurrence (≥MMR) from TKI discontinuation in the entire cohort was 6.2 months. All patients quickly achieved MMR after resuming TKI therapy. Results appear independent of both dose reduction and potential pretreatment with interferon-α. CONCLUSION: This retrospective study shows that TFR was not impaired by low-dose TKI regimens before TKI cessation in Patients with CML. Nevertheless, prospective randomized clinical trials must be undertaken to analyze the probability of successful TFR in patients managed with TKI dose de-escalation strategies before TKI discontinuation.


Assuntos
Relação Dose-Resposta a Droga , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Indução de Remissão , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/epidemiologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/efeitos adversos , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
16.
Exp Hematol ; 85: 47-56.e2, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32360510

RESUMO

Recent experimental data suggest that the heterogeneity of chronic myeloid leukemia (CML) stem cells may be the result of the development of unique molecular events generating functional consequences in terms of the resistance and persistence of leukemic stem cells. To explore this phenomenon, we designed a single-cell transcriptome assay evaluating simultaneously the expression of 87 genes. Highly purified CD34+ cells from three CML patients at diagnosis were immobilized in microfluidic chips, and the expression of 87 genes was evaluated in each cell. This analysis identified a group of 13 highly connected genes including NANOG, POU5F1, LIN28A, and SOX2, representing on average 8.59% of the cell population analyzed. Bioinformatics analysis with the corrected matrix and t-distributed stochastic neighbor embedding (tSNE) algorithm identified four distinct clusters, and the pseudotime analysis confirmed the presence of seven stem cell states in the four clusters identified. ALOX5 expression was associated with the group of cells expressing the pluripotency markers. In in vitro analyses, two genes that were predicted to undergo similar regulation using pseudotime analysis (ALOX5 and FGFR) were found to be similarly inhibited by ponatinib, an FGFR inhibitor. Finally, in an independent cohort of CML patients, we found that pluripotency gene expression is a common feature of CD34+ CML cells at diagnosis. Overall, these experiments allowed identification of individual CD34+ cells expressing high levels of pluripotency genes at diagnosis, in which a continuum of transitional states were identified using pseudotime analysis. These results suggest that leukemic stem cell persistence in CML needs to be targeted simultaneously rather than using a single pathway.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteínas de Neoplasias/biossíntese , Células-Tronco Neoplásicas/metabolismo , Análise de Célula Única , Transcriptoma , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/patologia
19.
Bull Cancer ; 107(1): 113-128, 2020 Jan.
Artigo em Francês | MEDLINE | ID: mdl-31353136

RESUMO

In the context of chronic myeloid leukemia (CML) resistant to tyrosine kinase inhibitors (TKIs), BCR-ABL1 tyrosine kinase domain (TKD) mutations still remain the sole biological marker that directly condition therapeutic decision. These recommendations aim at updating the use of BCR-ABL1 mutation testing with respect to new available therapeutic options and at repositioning different testing methods at the era of next generation sequencing (NGS). They have been written by a panel of experts from the French Study Group on CML (Fi-LMC), after a critical review of relevant publications. TKD mutation testing is recommended in case of treatment failure but not in case of optimal response. For patients in warning situation, mutation testing must be discussed depending on the type of TKI used, lasting of the treatment, kinetic evolution of BCR-ABL1 transcripts along time and necessity for switching treatment. The kind and the frequency of TKD mutations occasioning resistance mainly depend on the TKI in use and disease phase. Because of its better sensitivity, NGS methods are recommended for mutation testing rather than Sanger's. Facing a given TKD mutation, therapeutic decision should be taken based on in vitro sensitivity and clinical efficacy data. Identification by sequencing of a TKD mutation known to induce resistance must lead to a therapeutic change. The clinical value of testing methods more sensitive than NGS remains to be assessed.


Assuntos
Análise Mutacional de DNA/métodos , DNA de Neoplasias/genética , Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Mutação de Sentido Incorreto , Mutação Puntual , Antineoplásicos/uso terapêutico , Domínio Catalítico , Tomada de Decisão Clínica , DNA de Neoplasias/análise , Resistencia a Medicamentos Antineoplásicos/genética , Substituição de Medicamentos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Biologia Molecular , Domínios Proteicos , Inibidores de Proteínas Quinases/uso terapêutico , Papel (figurativo)
20.
Int J Mol Sci ; 20(7)2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30965622

RESUMO

Although human pluripotent stem cells (hPSCs) can theoretically differentiate into any cell type, their ability to produce hematopoietic cells is highly variable from one cell line to another. The underlying mechanisms of this heterogeneity are not clearly understood. Here, using a whole miRNome analysis approach in hPSCs, we discovered that their hematopoietic competency was associated with the expression of several miRNAs and conversely correlated to that of miR-206 specifically. Lentiviral-based miR-206 ectopic expression in H1 hematopoietic competent embryonic stem (ES) cells markedly impaired their differentiation toward the blood lineage. Integrative bioinformatics identified a potential miR-206 target gene network which included hematopoietic master regulators RUNX1 and TAL1. This work sheds light on the critical role of miR-206 in the generation of blood cells off hPSCs. Our results pave the way for future genetic manipulation of hPSCs aimed at increasing their blood regenerative potential and designing better protocols for the generation of bona fide hPSC-derived hematopoietic stem cells.


Assuntos
MicroRNAs/metabolismo , Células-Tronco Pluripotentes/citologia , Diferenciação Celular/fisiologia , Linhagem Celular , Linhagem da Célula , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células-Tronco Pluripotentes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA